Skip to main content

Probability and Cumulative Dice Sums

Short Notes: Get CUDA and gputools Running on Ubuntu 14.10

Here's a basic guide for getting CUDA 7.0 and the R package gputools running perfectly under Ubuntu 14.10. It's not difficult, but there are a few issues and this will be helpful to have in a single place.

If you're running Ubuntu 14.10, I'd recommend installing CUDA 7.0. NVIDIA has a 7.0 Debian package specifically for 14.10; this wasn't the case for CUDA 6.5, which only had a Debian package for 14.04.

To get access to CUDA 7.0, you'll first need to register as a CUDA developer.

Join The CUDA Registered Developer Program

Once you have access, navigate to the CUDA 7.0 download page and get the Debian package.

CUDA 7.0 Release Candidate Downloads

You'll either need to be running the NVIDIA 340 or 346 drivers. If you're having trouble upgrading, I'd suggest adding the xorg-edgers PPA.

Once your NVIDIA driver is set, install the CUDA 7.0 Debian package you've downloaded. Don't forget to remove any previously installed CUDA packages or repositories.

You'll need to add paths so everything knows where CUDA is installed. Append the following to the .bashrc in your home directory:

Execute "source ~/.bashrc" for these changes to be applied. If you want to test your new CUDA install, make the samples provided by NVIDIA.

I get the following output when running BlackScholes:

The next task is to install gputools for R. You can't unfortunately install the current package through R, as the source code contains references to CUDA architectures that are obsolete under CUDA 7.0. But that's easy to fix.

Now do some editing in gputools/src/Makefile:

Now build and install the patched gputools package while you're in the directory immediately above gputools:

If you want to make the gputools packages available for all R users

Keep in mind that they'll have to make the same environmental variable changes as above. Let's test it!

Running gives us:

A nice 26-fold speedup. We're all set!

Comments

  1. thanks - got it working with the -arch change and a few other hacks

    ReplyDelete
  2. Hmm, I can't get it to work. GPUTools is up to version 0.5, and when I follow these steps I get this error:
    ** testing if installed package can be loaded
    Error in library.dynam(lib, package, package.lib) :
    shared object ‘gputools.so’ not found
    Error: loading failed
    Execution halted
    ERROR: loading failed
    * removing ‘/home/boris/R/x86_64-pc-linux-gnu-library/3.0/gputools’

    ReplyDelete
    Replies
    1. I also couldn't get these steps to work with gputools version 0.5 and CUDA-7.5

      Did you ever find a solution?

      Delete

Post a Comment

Popular posts from this blog

Probability and Cumulative Dice Sums

Let a die be labeled with increasing positive integers \(a_1,\ldots , a_n\), and let the probability of getting \(a_i\) be \(p_i>0\). We start at 0 and roll the die, adding whatever number we get to the current total. If \({\rm Pr}(N)\) is the probability that at some point we achieve the sum \(N\), then \(\lim_{N \to \infty} {\rm Pr}(N)\) exists and equals \(1/\rm{E}(X)\) iff \((a_1, \ldots, a_n) = 1\). The direction \(\implies\) is obvious. Now, if the limit exists it must equal \(1/{\rm E}(X)\) by Chebyshev's inequality, so we only need to show that the limit exists assuming that \((a_1, \ldots, a_n) = 1\). We have the recursive relationship \[{\rm Pr}(N) = p_1 {\rm Pr}(N-a_1) + \ldots + p_n {\rm Pr}(N-a_n);\] the characteristic polynomial is therefore \[f(x) = x^{a_n} - \left(p_1 x^{(a_n-a_1)} + \ldots + p_n\right).\] This clearly has the root \(x=1\). Next note \[ f'(1) = a_n - \sum_{i=1}^{n} p_i a_n + \sum_{i=1}^{n} p_i a_i = \rm{E}(X) > 0 ,\] hence this root is als...

Simplified Multinomial Kelly

Here's a simplified version for optimal Kelly bets when you have multiple outcomes (e.g. horse races). The Smoczynski & Tomkins algorithm, which is explained here (or in the original paper): https://en.wikipedia.org/wiki/Kelly_criterion#Multiple_horses Let's say there's a wager that, for every $1 you bet, will return a profit of $b if you win. Let the probability of winning be \(p\), and losing be \(q=1-p\). The original Kelly criterion says to wager only if \(b\cdot p-q > 0\) (the expected value is positive), and in this case to wager a fraction \( \frac{b\cdot p-q}{b} \) of your bankroll. But in a horse race, how do you decide which set of outcomes are favorable to bet on? It's tricky, because these wagers are mutually exclusive i.e. you can win at most one. It turns out there's a simple and intuitive method to find which bets are favorable: 1) Look at \( b\cdot p-q\) for every horse. 2) Pick any horse for which \( b\cdot p-q > 0\) and mar...

Mixed Models in R - Bigger, Faster, Stronger

When you start doing more advanced sports analytics you'll eventually starting working with what are known as hierarchical, nested or mixed effects models . These are models that contain both fixed and random effects . There are multiple ways of defining fixed vs random random effects , but one way I find particularly useful is that random effects are being "predicted" rather than "estimated", and this in turn involves some "shrinkage" towards the mean. Here's some R code for NCAA ice hockey power rankings using a nested Poisson model (which can be found in my hockey GitHub repository ): model The fixed effects are year , field (home/away/neutral), d_div (NCAA division of the defense), o_div (NCAA division of the offense) and game_length (number of overtime periods); offense (strength of offense), defense (strength of defense) and game_id are all random effects. The reason for modeling team offenses and defenses as random vs fixed effec...