Skip to main content

Probability and Cumulative Dice Sums

Short Notes: Get CUDA and gputools Running on Ubuntu 14.10

Here's a basic guide for getting CUDA 7.0 and the R package gputools running perfectly under Ubuntu 14.10. It's not difficult, but there are a few issues and this will be helpful to have in a single place.

If you're running Ubuntu 14.10, I'd recommend installing CUDA 7.0. NVIDIA has a 7.0 Debian package specifically for 14.10; this wasn't the case for CUDA 6.5, which only had a Debian package for 14.04.

To get access to CUDA 7.0, you'll first need to register as a CUDA developer.

Join The CUDA Registered Developer Program

Once you have access, navigate to the CUDA 7.0 download page and get the Debian package.

CUDA 7.0 Release Candidate Downloads

You'll either need to be running the NVIDIA 340 or 346 drivers. If you're having trouble upgrading, I'd suggest adding the xorg-edgers PPA.

Once your NVIDIA driver is set, install the CUDA 7.0 Debian package you've downloaded. Don't forget to remove any previously installed CUDA packages or repositories.

You'll need to add paths so everything knows where CUDA is installed. Append the following to the .bashrc in your home directory:

Execute "source ~/.bashrc" for these changes to be applied. If you want to test your new CUDA install, make the samples provided by NVIDIA.

I get the following output when running BlackScholes:

The next task is to install gputools for R. You can't unfortunately install the current package through R, as the source code contains references to CUDA architectures that are obsolete under CUDA 7.0. But that's easy to fix.

Now do some editing in gputools/src/Makefile:

Now build and install the patched gputools package while you're in the directory immediately above gputools:

If you want to make the gputools packages available for all R users

Keep in mind that they'll have to make the same environmental variable changes as above. Let's test it!

Running gives us:

A nice 26-fold speedup. We're all set!

Comments

  1. thanks - got it working with the -arch change and a few other hacks

    ReplyDelete
  2. Hmm, I can't get it to work. GPUTools is up to version 0.5, and when I follow these steps I get this error:
    ** testing if installed package can be loaded
    Error in library.dynam(lib, package, package.lib) :
    shared object ‘gputools.so’ not found
    Error: loading failed
    Execution halted
    ERROR: loading failed
    * removing ‘/home/boris/R/x86_64-pc-linux-gnu-library/3.0/gputools’

    ReplyDelete
    Replies
    1. I also couldn't get these steps to work with gputools version 0.5 and CUDA-7.5

      Did you ever find a solution?

      Delete

Post a Comment

Popular posts from this blog

A Bayes' Solution to Monty Hall

For any problem involving conditional probabilities one of your greatest allies is Bayes' Theorem . Bayes' Theorem says that for two events A and B, the probability of A given B is related to the probability of B given A in a specific way. Standard notation: probability of A given B is written \( \Pr(A \mid B) \) probability of B is written \( \Pr(B) \) Bayes' Theorem: Using the notation above, Bayes' Theorem can be written:  \[ \Pr(A \mid B) = \frac{\Pr(B \mid A)\times \Pr(A)}{\Pr(B)} \] Let's apply Bayes' Theorem to the Monty Hall problem . If you recall, we're told that behind three doors there are two goats and one car, all randomly placed. We initially choose a door, and then Monty, who knows what's behind the doors, always shows us a goat behind one of the remaining doors. He can always do this as there are two goats; if we chose the car initially, Monty picks one of the two doors with a goat behind it at random. Assume we pick Door 1 an...

Simplified Multinomial Kelly

Here's a simplified version for optimal Kelly bets when you have multiple outcomes (e.g. horse races). The Smoczynski & Tomkins algorithm, which is explained here (or in the original paper): https://en.wikipedia.org/wiki/Kelly_criterion#Multiple_horses Let's say there's a wager that, for every $1 you bet, will return a profit of $b if you win. Let the probability of winning be \(p\), and losing be \(q=1-p\). The original Kelly criterion says to wager only if \(b\cdot p-q > 0\) (the expected value is positive), and in this case to wager a fraction \( \frac{b\cdot p-q}{b} \) of your bankroll. But in a horse race, how do you decide which set of outcomes are favorable to bet on? It's tricky, because these wagers are mutually exclusive i.e. you can win at most one. It turns out there's a simple and intuitive method to find which bets are favorable: 1) Look at \( b\cdot p-q\) for every horse. 2) Pick any horse for which \( b\cdot p-q > 0\) and mar...

Probability and Cumulative Dice Sums

Let a die be labeled with increasing positive integers \(a_1,\ldots , a_n\), and let the probability of getting \(a_i\) be \(p_i>0\). We start at 0 and roll the die, adding whatever number we get to the current total. If \({\rm Pr}(N)\) is the probability that at some point we achieve the sum \(N\), then \(\lim_{N \to \infty} {\rm Pr}(N)\) exists and equals \(1/\rm{E}(X)\) iff \((a_1, \ldots, a_n) = 1\). The direction \(\implies\) is obvious. Now, if the limit exists it must equal \(1/{\rm E}(X)\) by Chebyshev's inequality, so we only need to show that the limit exists assuming that \((a_1, \ldots, a_n) = 1\). We have the recursive relationship \[{\rm Pr}(N) = p_1 {\rm Pr}(N-a_1) + \ldots + p_n {\rm Pr}(N-a_n);\] the characteristic polynomial is therefore \[f(x) = x^{a_n} - \left(p_1 x^{(a_n-a_1)} + \ldots + p_n\right).\] This clearly has the root \(x=1\). Next note \[ f'(1) = a_n - \sum_{i=1}^{n} p_i a_n + \sum_{i=1}^{n} p_i a_i = \rm{E}(X) > 0 ,\] hence this root is als...