Skip to main content

Poisson Games and Sudden-Death Overtime

Baseball's Billion Dollar Equation

In 1999 Voros McCracken infamously speculated about the amount of control the pitcher had over balls put in play. Not so much, as it turned out, and DIPS was born. It's tough to put a value on something like DIPS, but if an MLB team had developed and exploited it for several years, it could potentially have been worth hundreds of millions of dollars. Likewise, catcher framing could easily have been worth hundreds of millions.

How about a billion dollar equation? Sure, look at the baseball draft. An 8th round draft pick like Paul Goldschmidt could net you a $200M surplus. And then there's Chase Headley, Matt Carpenter, Brandon Belt, Jason Kipnis and Matt Adams. The commonality? All college position players easily identified as likely major leaguers purely through statistical analysis. You can also do statistical analysis for college pitchers, of course, but ideally you'd also want velocities. These are frequently available through public sources, but you may have to put them together manually. We'll also find that GB/FB ratios are important.

There's plenty of public data available. I've made yearly NCAA college baseball data available in my public baseball GitHub account; it covers 2002-2014, which is plenty of data for analysis. Older years are also available, but only in PDF format. So you'll either have to enter the data manually, use a service or do some high-quality automated OCR. My repository also includes NCAA play-by-play data from several sources, which among other things is useful for building catcher framing and defensive estimates.

Also publicly available, and will be available in my GitHub over the next several days:
  1. NAIA - roughly NCAA D2 level
  2. NJCAA - junior college, same rules as NCAA
  3. CCCAA - junior college
  4. NWAACC - junior college
Prospects come out of the NAIA and NCAA D2/D3 divisions every year, and with the free agent market valuing a single win at around $7M you want to make sure you don't overlook any player with talent. With JUCO players you'd like to identify that sleeper before he transfers to an NCAA D1 and has a huge year. Later you'll also want to analyze:
  1. Summer leagues
  2. Independent leagues
We'll start by looking at what data is available and how to combine the data sets. There are always player transfers to identify, and NCAA teams frequently play interdivision games as well as NAIA teams. We'll want to build a predictive model that identifies the most talented players uniformly across all leagues, so this will be a boring but necessary step.

Comments

Popular posts from this blog

A Bayes' Solution to Monty Hall

For any problem involving conditional probabilities one of your greatest allies is Bayes' Theorem. Bayes' Theorem says that for two events A and B, the probability of A given B is related to the probability of B given A in a specific way.

Standard notation:

probability of A given B is written \( \Pr(A \mid B) \)
probability of B is written \( \Pr(B) \)

Bayes' Theorem:

Using the notation above, Bayes' Theorem can be written: \[ \Pr(A \mid B) = \frac{\Pr(B \mid A)\times \Pr(A)}{\Pr(B)} \]Let's apply Bayes' Theorem to the Monty Hall problem. If you recall, we're told that behind three doors there are two goats and one car, all randomly placed. We initially choose a door, and then Monty, who knows what's behind the doors, always shows us a goat behind one of the remaining doors. He can always do this as there are two goats; if we chose the car initially, Monty picks one of the two doors with a goat behind it at random.

Assume we pick Door 1 and then Monty sho…

What's the Value of a Win?

In a previous entry I demonstrated one simple way to estimate an exponent for the Pythagorean win expectation. Another nice consequence of a Pythagorean win expectation formula is that it also makes it simple to estimate the run value of a win in baseball, the point value of a win in basketball, the goal value of a win in hockey etc.

Let our Pythagorean win expectation formula be \[ w=\frac{P^e}{P^e+1},\] where \(w\) is the win fraction expectation, \(P\) is runs/allowed (or similar) and \(e\) is the Pythagorean exponent. How do we get an estimate for the run value of a win? The expected number of games won in a season with \(g\) games is \[W = g\cdot w = g\cdot \frac{P^e}{P^e+1},\] so for one estimate we only need to compute the value of the partial derivative \(\frac{\partial W}{\partial P}\) at \(P=1\). Note that \[ W = g\left( 1-\frac{1}{P^e+1}\right), \] and so \[ \frac{\partial W}{\partial P} = g\frac{eP^{e-1}}{(P^e+1)^2}\] and it follows \[ \frac{\partial W}{\partial P}(P=1) = …

Solving a Math Puzzle using Physics

The following math problem, which appeared on a Scottish maths paper, has been making the internet rounds.


The first two parts require students to interpret the meaning of the components of the formula \(T(x) = 5 \sqrt{36+x^2} + 4(20-x) \), and the final "challenge" component involves finding the minimum of \( T(x) \) over \( 0 \leq x \leq 20 \). Usually this would require a differentiation, but if you know Snell's law you can write down the solution almost immediately. People normally think of Snell's law in the context of light and optics, but it's really a statement about least time across media permitting different velocities.


One way to phrase Snell's law is that least travel time is achieved when \[ \frac{\sin{\theta_1}}{\sin{\theta_2}} = \frac{v_1}{v_2},\] where \( \theta_1, \theta_2\) are the angles to the normal and \(v_1, v_2\) are the travel velocities in the two media.

In our puzzle the crocodile has an implied travel velocity of 1/5 in the water …