- Get link
- Google+
- Other Apps

We'll start with a simple situation, and later gradually introduce more complexity. Let each expert state a yes or no opinion in response to a yes/no question (binary classifiers), each expert be independent of the other experts and assume expert \(i\) is correct with probability \(p_i\). We'll also assume that the prior distribution on whether the correct answer is yes or no to be uniform, i.e. each occurs with probability 0.5.

Label a "yes" as +1, and "no" as -1. We ask our question, which has some unknown +1/-1 answer \(L\), and get back a set of responses (labels) \(S = \{L_i \}\), where \(L_i\) is the response from expert \(i\). Observe we have \[ \Pr(S | L=+1) = \prod_{i} {p_i}^{\frac{L_i+1}{2}} \cdot {(1-p_i)}^\fra…