Skip to main content

Probability and Cumulative Dice Sums

The Kelly Criterion and a Sure Thing

The Kelly Criterion is an alternative to standard utility theory, which seeks to maximize expected utility. Instead, the Kelly Criterion seeks to maximize expected growth. That is, if we start out with an initial bankroll \(B_0\), we seek to maximize \(\mathrm{E}[g(t)]\), where \(B_t = B_0\cdot e^{g(t)}\).
As a simple example, consider the following choice. We can have a sure $3000, or we can take the gamble of a \(\frac{4}{5}\) chance of $4000 and a \(\frac{1}{5}\) chance of $0. What does Kelly say?
Assume we have a current bankroll of \(B_0\). After the first choice we have \(B_1 = B_0+3000\), which we can write as \[\mathrm{E}[g(1)] = \log\left(\frac{B_0+3000}{B_0}\right);\]for the second choice we have \[\mathrm{E}[g(1)] = \frac{4}{5} \log\left(\frac{B_0+4000}{B_0}\right).\]And so we want to compare \(\log\left(\frac{B_0+3000}{B_0}\right)\) and \(\frac{4}{5} \log\left(\frac{B_0+4000}{B_0}\right)\).
Exponentiating, we're looking for the positive root of \[{\left({B_0+3000}\right)}^5 - {B_0}\cdot {\left({B_0+4000}\right)}^4=0.\]Wolfram Alpha now tells us that we should go with the sure thing if \(B_0 < $4942.92\), and take the gamble otherwise.

Comments

Popular posts from this blog

Probability and Cumulative Dice Sums

Let a die be labeled with increasing positive integers \(a_1,\ldots , a_n\), and let the probability of getting \(a_i\) be \(p_i>0\). We start at 0 and roll the die, adding whatever number we get to the current total. If \({\rm Pr}(N)\) is the probability that at some point we achieve the sum \(N\), then \(\lim_{N \to \infty} {\rm Pr}(N)\) exists and equals \(1/\rm{E}(X)\) iff \((a_1, \ldots, a_n) = 1\). The direction \(\implies\) is obvious. Now, if the limit exists it must equal \(1/{\rm E}(X)\) by Chebyshev's inequality, so we only need to show that the limit exists assuming that \((a_1, \ldots, a_n) = 1\). We have the recursive relationship \[{\rm Pr}(N) = p_1 {\rm Pr}(N-a_1) + \ldots + p_n {\rm Pr}(N-a_n);\] the characteristic polynomial is therefore \[f(x) = x^{a_n} - \left(p_1 x^{(a_n-a_1)} + \ldots + p_n\right).\] This clearly has the root \(x=1\). Next note \[ f'(1) = a_n - \sum_{i=1}^{n} p_i a_n + \sum_{i=1}^{n} p_i a_i = \rm{E}(X) > 0 ,\] hence this root is als...

Simplified Multinomial Kelly

Here's a simplified version for optimal Kelly bets when you have multiple outcomes (e.g. horse races). The Smoczynski & Tomkins algorithm, which is explained here (or in the original paper): https://en.wikipedia.org/wiki/Kelly_criterion#Multiple_horses Let's say there's a wager that, for every $1 you bet, will return a profit of $b if you win. Let the probability of winning be \(p\), and losing be \(q=1-p\). The original Kelly criterion says to wager only if \(b\cdot p-q > 0\) (the expected value is positive), and in this case to wager a fraction \( \frac{b\cdot p-q}{b} \) of your bankroll. But in a horse race, how do you decide which set of outcomes are favorable to bet on? It's tricky, because these wagers are mutually exclusive i.e. you can win at most one. It turns out there's a simple and intuitive method to find which bets are favorable: 1) Look at \( b\cdot p-q\) for every horse. 2) Pick any horse for which \( b\cdot p-q > 0\) and mar...

Mixed Models in R - Bigger, Faster, Stronger

When you start doing more advanced sports analytics you'll eventually starting working with what are known as hierarchical, nested or mixed effects models . These are models that contain both fixed and random effects . There are multiple ways of defining fixed vs random random effects , but one way I find particularly useful is that random effects are being "predicted" rather than "estimated", and this in turn involves some "shrinkage" towards the mean. Here's some R code for NCAA ice hockey power rankings using a nested Poisson model (which can be found in my hockey GitHub repository ): model The fixed effects are year , field (home/away/neutral), d_div (NCAA division of the defense), o_div (NCAA division of the offense) and game_length (number of overtime periods); offense (strength of offense), defense (strength of defense) and game_id are all random effects. The reason for modeling team offenses and defenses as random vs fixed effec...