Skip to main content

Poisson Games and Sudden-Death Overtime

Highest Powers of 3 and \(\left(1+\sqrt{2}\right)^n\)

Let \(\left(1+\sqrt{2}\right)^{2012}=a+b\sqrt{2}\), where \(a\) and \(b\) are integers. What is the greatest common divisor of \(b\) and \(81\)?
Source: 2011-2012 SDML High School 2a, problem 15.

Let \((1+\sqrt{2})^n = a_n + b_n \sqrt{2}\). I've thought about this some more, and there's a nice way to describe the highest power of \(3\) that divides \(b_n\). This is probably outside of the scope of the intended solution, however.

First note that \((1-\sqrt{2})^n = a_n - b_n \sqrt{2}\), and so from \((1+\sqrt{2})(1-\sqrt{2})=-1\) we get \((1+\sqrt{2})^n (1-\sqrt{2})^n = {(-1)}^n\). This gives \[{a_n}^2 - 2 {b_n}^2 = {(-1)}^n.\] Now define the highest power of a prime \(p\) that divides \(n\) to be \(\operatorname{\nu}_p(n)\).
From cubing and using the above result it's straightforward to prove that if \(\operatorname{\nu}_3(b_n) = k > 0\) then \(\operatorname{\nu}_3(b_{3n}) = k+1\).
Note \((1+\sqrt{2})^4 = 17 + 12\sqrt{2} \equiv -1+3\sqrt{2} \pmod{3^2}\). Cubing and using the first formula as before, we can in fact show that \[(1+\sqrt{2})^{4\cdot 3^n} \equiv -1 + 3^{n+1}\sqrt{2} \pmod{3^{n+2}},\] and squaring we also have \[(1+\sqrt{2})^{8\cdot 3^n} \equiv 1 + 3^{n+1}\sqrt{2} \pmod{3^{n+2}}.\] Now assume \(\operatorname{\nu}_3(b_m) = k, \operatorname{\nu}_3(b_n) = l\) and \(k\neq l\). From the top formula if \(3 | b_i\) then \(3 \not{|} a_i\), and it follows that \[\operatorname{\nu}_3(b_{m+n}) = \min(k,l).\]Putting this all together, write \(n = 4\cdot m +k\), where \(0\leq k <4\). If \(k\neq 0\), then \(\operatorname{\nu}_3(b_{n}) = 0\). If \(k=0\), let the base-3 expansion of \(m\) be \(a_i \cdot 3^i + \ldots + a_0\). Then \[\operatorname{\nu}_3(b_{n}) = \min_{a_j \neq 0} j+1 .\]
For \(n=2012\), we have \(2012 = 4\cdot 503 = 4\cdot(2\cdot 3^5 + 3^2 + 2\cdot 3 + 2)\) and so \(\operatorname{\nu}_3(b_{2012})=1\). We don't actually need to compute the entire base-3 expansion for 503, of course; we only need to observe that it's not divisible by 3.

For \(n=2016\), we have \(2016 = 4\cdot 504 = 4\cdot(2\cdot 3^5 + 2\cdot 3^2)\) and so \(\operatorname{\nu}_3(b_{2016})=3\).

Comments

Popular posts from this blog

A Bayes' Solution to Monty Hall

For any problem involving conditional probabilities one of your greatest allies is Bayes' Theorem. Bayes' Theorem says that for two events A and B, the probability of A given B is related to the probability of B given A in a specific way.

Standard notation:

probability of A given B is written \( \Pr(A \mid B) \)
probability of B is written \( \Pr(B) \)

Bayes' Theorem:

Using the notation above, Bayes' Theorem can be written: \[ \Pr(A \mid B) = \frac{\Pr(B \mid A)\times \Pr(A)}{\Pr(B)} \]Let's apply Bayes' Theorem to the Monty Hall problem. If you recall, we're told that behind three doors there are two goats and one car, all randomly placed. We initially choose a door, and then Monty, who knows what's behind the doors, always shows us a goat behind one of the remaining doors. He can always do this as there are two goats; if we chose the car initially, Monty picks one of the two doors with a goat behind it at random.

Assume we pick Door 1 and then Monty sho…

What's the Value of a Win?

In a previous entry I demonstrated one simple way to estimate an exponent for the Pythagorean win expectation. Another nice consequence of a Pythagorean win expectation formula is that it also makes it simple to estimate the run value of a win in baseball, the point value of a win in basketball, the goal value of a win in hockey etc.

Let our Pythagorean win expectation formula be \[ w=\frac{P^e}{P^e+1},\] where \(w\) is the win fraction expectation, \(P\) is runs/allowed (or similar) and \(e\) is the Pythagorean exponent. How do we get an estimate for the run value of a win? The expected number of games won in a season with \(g\) games is \[W = g\cdot w = g\cdot \frac{P^e}{P^e+1},\] so for one estimate we only need to compute the value of the partial derivative \(\frac{\partial W}{\partial P}\) at \(P=1\). Note that \[ W = g\left( 1-\frac{1}{P^e+1}\right), \] and so \[ \frac{\partial W}{\partial P} = g\frac{eP^{e-1}}{(P^e+1)^2}\] and it follows \[ \frac{\partial W}{\partial P}(P=1) = …

Solving a Math Puzzle using Physics

The following math problem, which appeared on a Scottish maths paper, has been making the internet rounds.


The first two parts require students to interpret the meaning of the components of the formula \(T(x) = 5 \sqrt{36+x^2} + 4(20-x) \), and the final "challenge" component involves finding the minimum of \( T(x) \) over \( 0 \leq x \leq 20 \). Usually this would require a differentiation, but if you know Snell's law you can write down the solution almost immediately. People normally think of Snell's law in the context of light and optics, but it's really a statement about least time across media permitting different velocities.


One way to phrase Snell's law is that least travel time is achieved when \[ \frac{\sin{\theta_1}}{\sin{\theta_2}} = \frac{v_1}{v_2},\] where \( \theta_1, \theta_2\) are the angles to the normal and \(v_1, v_2\) are the travel velocities in the two media.

In our puzzle the crocodile has an implied travel velocity of 1/5 in the water …