Skip to main content

Probability and Cumulative Dice Sums

Gambling to Optimize Expected Median Bankroll

Gambling to optimize your expected bankroll mean is extremely risky, as you wager your entire bankroll for any favorable gamble, making ruin almost inevitable. But what if, instead, we gambled not to maximize the expected bankroll mean, but the expected bankroll median?

Let the probability of winning a favorable bet be \(p\), and the net odds be \(b\). That is, if we wager \(1\) unit and win, we get back \(b\) units (in addition to our wager). Assume our betting strategy is to wager some fraction \(f\) of our bankroll, hence \(0 \leq f \leq 1\). By our assumption, our betting strategy is invariant with respect to the actual size of our bankroll, and so if we were to repeat this gamble \(n\) times with the same \(p\) and \(b\), the strategy wouldn't change. It follows we may assume an initial bankroll of size \(1\).

Let \( q = 1-p \). Now, after \(n\)  such gambles our bankroll would have a binomial distribution with probability mass function \[ \Pr(k,n,p) = \binom{n}{k} p^k q^{n-k}, \] where \(k\) is the number of wins, \(n-k\) the number of losses. Note the median occurs at \( k=n p \), corresponding to a bankroll of \[ \left(1+f\cdot b\right)^{n p} \left(1-f\right)^{n q} .\] Now, maximizing this value is equivalent to maximizing its \(\log\), which is \[ n p \log\left(1+f\cdot b\right) + n q\log\left(1-f\right) .\] But this is maximized when \[ p \log\left(1+f\cdot b\right) + q\log\left(1-f\right)\] is maximized, and this is precisely the condition for a Kelly optimal bet! It follows that if we gamble to optimize our expected median, this is equivalent to Kelly optimal betting, and hence maximizing expected log wealth.

With a little more work, we can show that the same conclusion holds if we gamble to optimize any expected quantile \(x\), with \( 0 < x < 1\). Maximizing the expected quantile \( 0 \) corresponds to "riskless" gambling, i.e. only gambling when there's no chance of a loss. Maximizing the expected quantile \( 1 \) corresponds to maximizing the expected bankroll mean, which we can refer to as the "reckless" strategy. Thus, under our assumptions, there are only three quantile maximization strategies - riskless, Kelly and reckless.

Comments

Popular posts from this blog

Simplified Multinomial Kelly

Here's a simplified version for optimal Kelly bets when you have multiple outcomes (e.g. horse races). The Smoczynski & Tomkins algorithm, which is explained here (or in the original paper): https://en.wikipedia.org/wiki/Kelly_criterion#Multiple_horses Let's say there's a wager that, for every $1 you bet, will return a profit of $b if you win. Let the probability of winning be \(p\), and losing be \(q=1-p\). The original Kelly criterion says to wager only if \(b\cdot p-q > 0\) (the expected value is positive), and in this case to wager a fraction \( \frac{b\cdot p-q}{b} \) of your bankroll. But in a horse race, how do you decide which set of outcomes are favorable to bet on? It's tricky, because these wagers are mutually exclusive i.e. you can win at most one. It turns out there's a simple and intuitive method to find which bets are favorable: 1) Look at \( b\cdot p-q\) for every horse. 2) Pick any horse for which \( b\cdot p-q > 0\) and mar...

Probability and Cumulative Dice Sums

Let a die be labeled with increasing positive integers \(a_1,\ldots , a_n\), and let the probability of getting \(a_i\) be \(p_i>0\). We start at 0 and roll the die, adding whatever number we get to the current total. If \({\rm Pr}(N)\) is the probability that at some point we achieve the sum \(N\), then \(\lim_{N \to \infty} {\rm Pr}(N)\) exists and equals \(1/\rm{E}(X)\) iff \((a_1, \ldots, a_n) = 1\). The direction \(\implies\) is obvious. Now, if the limit exists it must equal \(1/{\rm E}(X)\) by Chebyshev's inequality, so we only need to show that the limit exists assuming that \((a_1, \ldots, a_n) = 1\). We have the recursive relationship \[{\rm Pr}(N) = p_1 {\rm Pr}(N-a_1) + \ldots + p_n {\rm Pr}(N-a_n);\] the characteristic polynomial is therefore \[f(x) = x^{a_n} - \left(p_1 x^{(a_n-a_1)} + \ldots + p_n\right).\] This clearly has the root \(x=1\). Next note \[ f'(1) = a_n - \sum_{i=1}^{n} p_i a_n + \sum_{i=1}^{n} p_i a_i = \rm{E}(X) > 0 ,\] hence this root is als...

Mixed Models in R - Bigger, Faster, Stronger

When you start doing more advanced sports analytics you'll eventually starting working with what are known as hierarchical, nested or mixed effects models . These are models that contain both fixed and random effects . There are multiple ways of defining fixed vs random random effects , but one way I find particularly useful is that random effects are being "predicted" rather than "estimated", and this in turn involves some "shrinkage" towards the mean. Here's some R code for NCAA ice hockey power rankings using a nested Poisson model (which can be found in my hockey GitHub repository ): model The fixed effects are year , field (home/away/neutral), d_div (NCAA division of the defense), o_div (NCAA division of the offense) and game_length (number of overtime periods); offense (strength of offense), defense (strength of defense) and game_id are all random effects. The reason for modeling team offenses and defenses as random vs fixed effec...