Skip to main content

Poisson Games and Sudden-Death Overtime

Poisson Games and Sudden-Death Overtime

Let's say we have a game that can be reasonably modeled as two independent Poisson processes with team \(i\) having parameter \(\lambda_i\). If one team wins in regulation with team \(i\) scoring \(n_i\), then it's well-known we have the MLE estimate \(\hat{\lambda_i}=n_i\). But what if the game ends in a tie in regulation with each team scoring \(n\) goals and we have sudden-death overtime? How does this affect the MLE estimate for the winning and losing teams?

Assuming without loss of generality that team \(1\) is the winner in sudden-death overtime. As we have two independent Poisson processes, the probability of this occurring is \(\frac{\lambda_1}{\lambda_1 + \lambda_2}\). Thus, the overall likelihood we'd like to maximize is \[L = e^{-\lambda_1} \frac{{\lambda_1}^n}{n!} e^{-\lambda_2} \frac{{\lambda_2}^n}{n!} \frac{\lambda_1}{\lambda_1 + \lambda_2}.\] Letting \(l = \log{L}\) we get \[l = -{\lambda_1} + n \log{\lambda_1} - {\lambda_2} + n \log{\lambda_2} - 2 \log{n!} + \log{\lambda_1}-\log({\lambda_1 + \lambda_2}).\] This gives \[\begin{equation}
\frac{\partial l}{\partial \lambda_1} &= -1+\frac{n}{\lambda_1}+\frac{1}{\lambda_1}+\frac{1}{\lambda_1 + \lambda_2}\\
\frac{\partial l}{\partial \lambda_2} &= -1+\frac{n}{\lambda_2}+\frac{1}{\lambda_1 + \lambda_2}.
\end{equation}\] Setting both partials equal to \(0\) and solving, we get \[\begin{equation}
(n-\hat{\lambda_1})(\hat{\lambda_1}+\hat{\lambda_2})+\hat{\lambda_2} &= 0\\
(n-\hat{\lambda_2})(\hat{\lambda_1}+\hat{\lambda_2})-\hat{\lambda_2} &= 0,
\end{equation}\] and so \[\begin{equation}
\hat{\lambda_1} &= (n+1) \frac{2n}{2n+1}\\
\hat{\lambda_2} &= n \frac{2n}{2n+1}.
\end{equation}\] For example, if both teams score \(3\) goals in regulation and team \(1\) wins in sudden-death overtime, our MLE estimates are \(\hat{\lambda_1} = 3\frac{3}{7}, \hat{\lambda_2} = 2\frac{4}{7}\).

Intuitively this makes sense, because \(2n\) goals were scored in regulation time, hence we "expect" that the overtime goal occurred around a fraction \(\frac{1}{2n}\) of regulation, so team \(1\) scored \(n+1\) goals in about \(\frac{2n+1}{2n}\) regulation periods and team \(2\) scored \(n\) goals in about \(\frac{2n+1}{2n}\) regulation periods. The standard Poisson process MLE estimates here coincide with the estimates we derived above.

Does this work in practice? Yes! I tested it on my NCAA men's lacrosse model, and it increased the out-of-sample testing accuracy by 0.5%. Surprisingly large for such a small change!


  1. +$3,624 profit last week...

    Subscribe For 5 Star verified winning bets on MLB, NHL, NBA & NFL + Anti-Vegas Smart Money Signals!


Post a Comment

Popular posts from this blog

A Bayes' Solution to Monty Hall

For any problem involving conditional probabilities one of your greatest allies is Bayes' Theorem. Bayes' Theorem says that for two events A and B, the probability of A given B is related to the probability of B given A in a specific way.

Standard notation:

probability of A given B is written \( \Pr(A \mid B) \)
probability of B is written \( \Pr(B) \)

Bayes' Theorem:

Using the notation above, Bayes' Theorem can be written: \[ \Pr(A \mid B) = \frac{\Pr(B \mid A)\times \Pr(A)}{\Pr(B)} \]Let's apply Bayes' Theorem to the Monty Hall problem. If you recall, we're told that behind three doors there are two goats and one car, all randomly placed. We initially choose a door, and then Monty, who knows what's behind the doors, always shows us a goat behind one of the remaining doors. He can always do this as there are two goats; if we chose the car initially, Monty picks one of the two doors with a goat behind it at random.

Assume we pick Door 1 and then Monty sho…

What's the Value of a Win?

In a previous entry I demonstrated one simple way to estimate an exponent for the Pythagorean win expectation. Another nice consequence of a Pythagorean win expectation formula is that it also makes it simple to estimate the run value of a win in baseball, the point value of a win in basketball, the goal value of a win in hockey etc.

Let our Pythagorean win expectation formula be \[ w=\frac{P^e}{P^e+1},\] where \(w\) is the win fraction expectation, \(P\) is runs/allowed (or similar) and \(e\) is the Pythagorean exponent. How do we get an estimate for the run value of a win? The expected number of games won in a season with \(g\) games is \[W = g\cdot w = g\cdot \frac{P^e}{P^e+1},\] so for one estimate we only need to compute the value of the partial derivative \(\frac{\partial W}{\partial P}\) at \(P=1\). Note that \[ W = g\left( 1-\frac{1}{P^e+1}\right), \] and so \[ \frac{\partial W}{\partial P} = g\frac{eP^{e-1}}{(P^e+1)^2}\] and it follows \[ \frac{\partial W}{\partial P}(P=1) = …

Solving a Math Puzzle using Physics

The following math problem, which appeared on a Scottish maths paper, has been making the internet rounds.

The first two parts require students to interpret the meaning of the components of the formula \(T(x) = 5 \sqrt{36+x^2} + 4(20-x) \), and the final "challenge" component involves finding the minimum of \( T(x) \) over \( 0 \leq x \leq 20 \). Usually this would require a differentiation, but if you know Snell's law you can write down the solution almost immediately. People normally think of Snell's law in the context of light and optics, but it's really a statement about least time across media permitting different velocities.

One way to phrase Snell's law is that least travel time is achieved when \[ \frac{\sin{\theta_1}}{\sin{\theta_2}} = \frac{v_1}{v_2},\] where \( \theta_1, \theta_2\) are the angles to the normal and \(v_1, v_2\) are the travel velocities in the two media.

In our puzzle the crocodile has an implied travel velocity of 1/5 in the water …