Skip to main content

Why does Kaggle use Log-loss?

Getting Started Doing Baseball Analysis without Coding

There's lot of confusion about how best to get started doing baseball analysis. It doesn't have to be difficult! You can start doing it right away, even if you don't know anything about R, Python, Ruby, SQL or machine learning (most GMs can't code). Learning these and other tools makes it easier and faster to do analysis, but they're only part of the process of constructing a well-reasoned argument. They're important, of course, because they can turn 2 months of hard work into 10 minutes of typing. Even if you don't like mathematics, statistics, coding or databases, they're mundane necessities that can make your life much easier and your analysis more powerful.

Here are two example problems. You don't have to do these specifically, but they illustrate the general idea. Write up your solutions, then publish them for other people to make some (hopefully) helpful comments and suggestions. This can be on a blog or through a versioning control platform like GitHub (which is also great for versioning any code or data your use). Try to write well! A great argument, but poorly written and poorly presented isn't going to be very convincing. Once it's finished, review and revise, review and revise, review and revise. When a team you follow makes a move, treat it as a puzzle for you to solve. Why did they do it, and was it a good idea?
  1. Pick a recent baseball trade. For example, the Padres traded catcher Yasmani Grandal for Dodgers outfielder Matt Kemp. It's never that simple of course; the Padres aren't paying all of Matt Kemp's salary. Find out what the salary obligations were for each club in this trade. Using your favorite public projection system, where were the projected surplus values for each player at the time of the trade? Of course, there were other players involved in that trade, too. What were the expected surplus values of those players? From the perspective of surplus values, who won or lost this trade? Finally, why do you think each team made this trade, especially considering that they were division rivals? Do you think one or both teams made any mistakes in reasoning; if so, what were they, and did the other team take advantage of those mistakes?
  2. Pick any MLB team and review the draft picks they made in the 2015 draft for the first 10 rounds. Do you notice any trends or changes from the 2014 draft? Do these picks agree or disagree with the various public pre-draft player rankings? Which picks were designed to save money to help sign other picks? Identify those tough signs. Was the team actually able to sign them, and were the picks to save money still reasonably good picks? Do you best to identify which picks you thought were good and bad, write them down in a notebook with your reasoning, then check back in 6 months and a year. Was your reasoning correct? If not, what were your mistakes and how can you avoid making them in the future?

Comments

Popular posts from this blog

A Bayes' Solution to Monty Hall

For any problem involving conditional probabilities one of your greatest allies is Bayes' Theorem. Bayes' Theorem says that for two events A and B, the probability of A given B is related to the probability of B given A in a specific way.

Standard notation:

probability of A given B is written \( \Pr(A \mid B) \)
probability of B is written \( \Pr(B) \)

Bayes' Theorem:

Using the notation above, Bayes' Theorem can be written: \[ \Pr(A \mid B) = \frac{\Pr(B \mid A)\times \Pr(A)}{\Pr(B)} \]Let's apply Bayes' Theorem to the Monty Hall problem. If you recall, we're told that behind three doors there are two goats and one car, all randomly placed. We initially choose a door, and then Monty, who knows what's behind the doors, always shows us a goat behind one of the remaining doors. He can always do this as there are two goats; if we chose the car initially, Monty picks one of the two doors with a goat behind it at random.

Assume we pick Door 1 and then Monty sho…

What's the Value of a Win?

In a previous entry I demonstrated one simple way to estimate an exponent for the Pythagorean win expectation. Another nice consequence of a Pythagorean win expectation formula is that it also makes it simple to estimate the run value of a win in baseball, the point value of a win in basketball, the goal value of a win in hockey etc.

Let our Pythagorean win expectation formula be \[ w=\frac{P^e}{P^e+1},\] where \(w\) is the win fraction expectation, \(P\) is runs/allowed (or similar) and \(e\) is the Pythagorean exponent. How do we get an estimate for the run value of a win? The expected number of games won in a season with \(g\) games is \[W = g\cdot w = g\cdot \frac{P^e}{P^e+1},\] so for one estimate we only need to compute the value of the partial derivative \(\frac{\partial W}{\partial P}\) at \(P=1\). Note that \[ W = g\left( 1-\frac{1}{P^e+1}\right), \] and so \[ \frac{\partial W}{\partial P} = g\frac{eP^{e-1}}{(P^e+1)^2}\] and it follows \[ \frac{\partial W}{\partial P}(P=1) = …

Behind the Speadsheet

In the book "The Only Rule Is It Has to Work: Our Wild Experiment Building a New Kind of Baseball Team", Ben Lindbergh and Sam Miller recount a grand adventure to take command of an independent league baseball team, with the vision of trying every idea, sane or crazy, in an attempt to achieve a winning edge. Five infielders, four outfielders, defensive shifts, optimizing lineups - everything.

It was really an impossible task. Professional sports at every level are filled with highly accomplished and competitive athletes, with real lives and real egos. Now imagine walking in one day and suddenly trying to convince them that they should be doing things differently. Who do you think you are?

I was one of the analysts who helped Ben and Sam in this quest, and I wanted to write some thoughts down from my own perspective, not as one of the main characters, but as someone more behind the scenes. These are some very short initial thoughts only, but I'd like to followup with some…