Skip to main content

Probability and Cumulative Dice Sums

Young Alan Turing and the Arctangent

With the release of the new film "The Imitation Game", I decided to read the biography this excellent film was based on - Alan Turing: The Enigma. In it, the author Andrew Hodges relates the story that the 15-year-old Alan Turing derived the Maclaurin series for the \(\arctan\) function, i.e. \[\arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \ldots\] This is trivial using calculus, but it's explicitly stated that young Alan Turing neither knew nor used calculus. How would you derived such a series without calculus?

This is a tricky problem, and I'd suggest first tackling the much easier problem of deriving the Maclaurin series for \(\exp(x)\) from the relation \( \exp(2x) = \exp(x)\cdot \exp(x)\). This is an underconstrained relation, so you'll need to assume \(c_0 = 1, c_1 = 1\).

Getting back to \(\arctan\), you could start with the half-angle formula for the tangent: \[\tan(2x) = \frac{2\tan(x)}{1-{\tan}^2(x)}.\] Now use the Weierstrass-like substitution \(x = \arctan(t)\) to get \[\tan(2\arctan(t)) = \frac{2t}{1-t^2}.\] The right-hand side can be expanded in the usual geometric series fashion to get \[\tan(2\arctan(t)) = 2t\cdot (1+t^2+t^4+\ldots).\]
Finally, take the \(\arctan\) of both sides and assume we have the series expansion \(\arctan(x) = c_1 x + c_3 x^3 + c_5 x^5 + \ldots\). Note that we may ignore the terms with even powers of \(x\) as \(\arctan(x)\) is an odd function.

This gives us the setting \[2\arctan(t) = \arctan(2t\cdot (1+t^2+t^4+\ldots))\] and expanding as a power series \[2(c_1 t + c_3 t^3 + \ldots) = c_1 (2t\cdot (1+t^2+\ldots) + c_3 (2t\cdot (1+t^2+\ldots))^3 + \ldots\]
The next step is to line up powers of \(t\) on both sides and set up a system of simultaneous equations. There's some algebra and combinatorics involved, but we end up with the system of equations \[c_{2i+1} = \sum_{j=0}^{i} c_{2j+1}\cdot 2^{2j} \cdot {{i+j} \choose {2j}}.\] Note that this system is underconstrained due to our functional relationship being satisfied by any multiple of the \(\arctan\) function. We'll assume that \(c_1 = 1\), but note that this follows from the classical (non-calculus) limit \( \lim_{x\to 0} \frac{\sin(x)}{x} = 1\).

The first few relations are \begin{align*}
c_1 &= c_1 \\
c_3 &= c_1 + 4\cdot c_3 \\
c_5 &= c_1 + 12\cdot c_3 + 16\cdot c_5 \\
c_7 &= c_1 + 24\cdot c_3 + 80\cdot c_5 + 64\cdot c_7
\end{align*}
Assuming \(c_1 = 1\) as above we quickly calculate \( c_3 = -\frac{1}{3}, c_5 = \frac{1}{5}, c_7 = -\frac{1}{7}\), with the pattern being obvious.

That \(c_{2i+1} = \frac{(-1)^i}{2i+1}\) can be verified by Wolfram Alpha:

Wolfram Alpha

An obvious question is whether or not there's a simple demonstration of this; in particular, one that a young Alan Turing may have found. This I don't know (yet).

Comments

  1. Did you mean to link to the book 'Alan Turing: The Enigma' by Andrew Hodges?

    http://www.amazon.com/Alan-Turing-Enigma-Inspired-Imitation-ebook/dp/B00M032W92/

    ReplyDelete

Post a Comment

Popular posts from this blog

Simplified Multinomial Kelly

Here's a simplified version for optimal Kelly bets when you have multiple outcomes (e.g. horse races). The Smoczynski & Tomkins algorithm, which is explained here (or in the original paper): https://en.wikipedia.org/wiki/Kelly_criterion#Multiple_horses Let's say there's a wager that, for every $1 you bet, will return a profit of $b if you win. Let the probability of winning be \(p\), and losing be \(q=1-p\). The original Kelly criterion says to wager only if \(b\cdot p-q > 0\) (the expected value is positive), and in this case to wager a fraction \( \frac{b\cdot p-q}{b} \) of your bankroll. But in a horse race, how do you decide which set of outcomes are favorable to bet on? It's tricky, because these wagers are mutually exclusive i.e. you can win at most one. It turns out there's a simple and intuitive method to find which bets are favorable: 1) Look at \( b\cdot p-q\) for every horse. 2) Pick any horse for which \( b\cdot p-q > 0\) and mar...

A Bayes' Solution to Monty Hall

For any problem involving conditional probabilities one of your greatest allies is Bayes' Theorem . Bayes' Theorem says that for two events A and B, the probability of A given B is related to the probability of B given A in a specific way. Standard notation: probability of A given B is written \( \Pr(A \mid B) \) probability of B is written \( \Pr(B) \) Bayes' Theorem: Using the notation above, Bayes' Theorem can be written:  \[ \Pr(A \mid B) = \frac{\Pr(B \mid A)\times \Pr(A)}{\Pr(B)} \] Let's apply Bayes' Theorem to the Monty Hall problem . If you recall, we're told that behind three doors there are two goats and one car, all randomly placed. We initially choose a door, and then Monty, who knows what's behind the doors, always shows us a goat behind one of the remaining doors. He can always do this as there are two goats; if we chose the car initially, Monty picks one of the two doors with a goat behind it at random. Assume we pick Door 1 an...

Probability and Cumulative Dice Sums

Let a die be labeled with increasing positive integers \(a_1,\ldots , a_n\), and let the probability of getting \(a_i\) be \(p_i>0\). We start at 0 and roll the die, adding whatever number we get to the current total. If \({\rm Pr}(N)\) is the probability that at some point we achieve the sum \(N\), then \(\lim_{N \to \infty} {\rm Pr}(N)\) exists and equals \(1/\rm{E}(X)\) iff \((a_1, \ldots, a_n) = 1\). The direction \(\implies\) is obvious. Now, if the limit exists it must equal \(1/{\rm E}(X)\) by Chebyshev's inequality, so we only need to show that the limit exists assuming that \((a_1, \ldots, a_n) = 1\). We have the recursive relationship \[{\rm Pr}(N) = p_1 {\rm Pr}(N-a_1) + \ldots + p_n {\rm Pr}(N-a_n);\] the characteristic polynomial is therefore \[f(x) = x^{a_n} - \left(p_1 x^{(a_n-a_1)} + \ldots + p_n\right).\] This clearly has the root \(x=1\). Next note \[ f'(1) = a_n - \sum_{i=1}^{n} p_i a_n + \sum_{i=1}^{n} p_i a_i = \rm{E}(X) > 0 ,\] hence this root is als...