Skip to main content

Probability and Cumulative Dice Sums

Building a Personal Supercomputer

It's time for a workstation upgrade; here's what I've assembled.

The massive case has plenty of space for additional drives to store the extreme amount of data that nearly every sport is now collecting together with the associated video footage. The case, power supply and motherboard allow up to 3 additional video cards to use as GPU units as your analytical needs demand (and budget can handle).
  1. Cooler Master Cosmos II - Ultra Full Tower Computer Case


    An absolutely massive case - plenty of room for an E-ATX motherboard, large power supply, multiple video cards and hard drives.

  2. PC Power & Cooling 1200W Silencer MK III Series Modular Power Supply


    An exceptionally large power supply, but platinum rated and plenty of room to spare allows it to operate nearly silenty, plus it'll handle any additional video cards you'll add later for GPU computing.

  3. ASUS Rampage IV Black Edition LGA 2011 Extended ATX Intel Motherboard


    Space for 4 video cards, 8 memory sticks (up to 64GB), superb quality and extreme tweakability.

  4. Intel i7-4930K LGA 2011 64 Technology Extended Memory CPU


    Ivy Bridge, 6 cores, exceptional ability to overclock. My day-to-day overclock is 4.5 GHz.

  5. Corsair Hydro Series H90 140 mm High Performance Liquid CPU Cooler


    Fits well in the Cosmos II case. Whisper quiet and keeps the CPU at comfortable temperatures even when overclocked to 4.5 GHz.

  6. (2) Corsair Dominator Platinum 32GB (4x8GB) DDR3 2133 MHz


    Total of 64GB. Top-quality, you'll need your RAM in matched sets of 4 to enable quad-channel.

  7. EVGA GeForce GTX TITAN SuperClocked 6GB GDDR5 384bit


     Top-of-the-line NVIDIA Kepler card for GPU computing. 2688 CUDA cores that reach 4800 TFLOPS single-precision and 1600 TFLOPS double-precision.

  8. (2) Seagate NAS HDD 2TB SATA 6GB NCQ 64 MB Cache Bare Drive

    Solid hard drive; you'll need 2 or more drives for a RAID 10 array.

  9. Samsung Electronics 840 Pro Series 2.5-Inch 256 GB SATA 6GB/s Solid State Drive

    Small, fast SSD for quick booting and anything bottlenecked by drive read/write times.

  10. Silverstone Tek 3.5-inch to 2 x 2.5-Inch Bay Converter

    Needed to adapt the SSD to the Cosmos II case.

  11. Ubuntu Linux


     Ubuntu Linux - what else?

Comments

Post a Comment

Popular posts from this blog

Notes on Setting up a Titan V under Ubuntu 17.04

I recently purchased a Titan V GPU to use for machine and deep learning, and in the process of installing the latest Nvidia driver's hosed my Ubuntu 16.04 install. I was overdue for a fresh install of Linux, anyway, so I decided to upgrade some of my drives at the same time. Here are some of my notes for the process I went through to get the Titan V working perfectly with TensorFlow 1.5 under Ubuntu 17.04. Old install: Ubuntu 16.04 EVGA GeForce GTX Titan SuperClocked 6GB 2TB Seagate NAS HDD + additional drives New install: Ubuntu 17.04 Titan V 12GB / partition on a 250GB Samsung 840 Pro SSD (had an extra around) /home partition on a new 1TB Crucial MX500 SSD New WD Blue 4TB HDD + additional drives You'll need to install Linux in legacy mode, not UEFI, in order to use Nvidia's proprietary drivers for the Titan V. Note that Linux will cheerfully boot in UEFI mode, but will not load any proprietary drivers (including Nvidia's). You'll need proprietary d

Mixed Models in R - Bigger, Faster, Stronger

When you start doing more advanced sports analytics you'll eventually starting working with what are known as hierarchical, nested or mixed effects models . These are models that contain both fixed and random effects . There are multiple ways of defining fixed vs random random effects , but one way I find particularly useful is that random effects are being "predicted" rather than "estimated", and this in turn involves some "shrinkage" towards the mean. Here's some R code for NCAA ice hockey power rankings using a nested Poisson model (which can be found in my hockey GitHub repository ): model <- gs ~ year+field+d_div+o_div+game_length+(1|offense)+(1|defense)+(1|game_id) fit <- glmer(model, data=g, verbose=TRUE, family=poisson(link=log) ) The fixed effects are year , field (home/away/neutral), d_div (NCAA division of the defense), o_div (NCAA division of the offense) and game_length (number of overtime

A Bayes' Solution to Monty Hall

For any problem involving conditional probabilities one of your greatest allies is Bayes' Theorem . Bayes' Theorem says that for two events A and B, the probability of A given B is related to the probability of B given A in a specific way. Standard notation: probability of A given B is written \( \Pr(A \mid B) \) probability of B is written \( \Pr(B) \) Bayes' Theorem: Using the notation above, Bayes' Theorem can be written:  \[ \Pr(A \mid B) = \frac{\Pr(B \mid A)\times \Pr(A)}{\Pr(B)} \] Let's apply Bayes' Theorem to the Monty Hall problem . If you recall, we're told that behind three doors there are two goats and one car, all randomly placed. We initially choose a door, and then Monty, who knows what's behind the doors, always shows us a goat behind one of the remaining doors. He can always do this as there are two goats; if we chose the car initially, Monty picks one of the two doors with a goat behind it at random. Assume we pick Door 1 an