Skip to main content

Probability and Cumulative Dice Sums

Solving the TopSpin Puzzle using GAP

TopSpin is an oval-track permutation puzzle that was made by Binary Arts; similar puzzles are made and sold by other manufacturers. Here's the Binary Arts TopSpin.

It's not a difficult puzzle to solve if you play around with it for a few hours and figure out how to generate various permutations. It's more interesting (and difficult) if you observe that the turntable has a distinguishable top and bottom. This suggests an interesting question - can you invert the turntable while keeping the numbers in the track in the same order?

The answer is, perhaps surprisingly, yes. Here's one way to find a sequence of operations that produces precisely this outcome.

GAP (Groups, Algorithms and Programming) is a freely available programming language that specializes in computational group theory, and it's perfect for solving permutation puzzles. Here's my GAP code for TopSpin. Label the top of the turntable with 21 and the bottom with 22. Flipping the turntable generates the permutation \[(1,4)(2,3)(21,22);\] rotating the oval to the left generates the permutation \[ (2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1). \] Denoting these two permutations as \(x\) and \(y\), we can now simply ask GAP to find a sequence of operations on the free group generated by \(x,y\) that results in the pre-images \((1,2)\), flipping two adjacent numbers on the track, leaving everything else the same (including turntable parity); and \((21,22)\), flipping turntable parity, leaving everything else the same. This corresponds to the operation of flipping the turntable while keeping the order of the numbers in the track the same.


Running the code, we get these lovely results:
(1,2) = y*x^-1*y^-1*x^-1*y*x^-1*y*x^-1*y^-1*x^-1*y^-1*x^-1*y^2*x^-1*y^-1*x^-1*y^-1*x^-1*y^4*x^-1*y^-1*x^-1*y^2*x^-1*y^-2*x^-1*y*x^-1*y^2*x^-1*y^-3*x^-1*y^-3*x*y^-4*x*y*x*y^-1*x*y^4*x^-1*y^-5*x^-1*y^-1*x^-1*y^5*x^-1*y^-6*x^-1*y^2*x^-1*y^-1*x^-1*y^5*x*y*x*y*x*y*x*y*x*y^5*x*y*x*y^-1*x*y^-5*x^-1*y^-1*x^-1*y^-1*x^-1*y^-2*x*y*x*y^-1*x*y^4*x*y^-1*x*y^3*x^-1*y^-1*x^-1*y^6*x^-1*y^-1*x^-2*y^-4*x^-3*y^-3*x^-2*y^-1*x^-1*y*x^-1*y^2*x^-1*y^-2*x^-1*y^-1*x^-1*y*x*y*x^-1*y*x^-1*y^-1*x^-1*y^-2 
(21,22) = y*x^-1*y^2*x*y^-1*x*y*x*y^-1*x*y^-2*x*y^2*x*y^-1*x*y*x*y*x*y^-2*x^-1*y*x^-1*y^-2*x^-1
Since there are sequences of operations that allow us to flip any two adjacent numbers or the parity of the turntable, it follows that all possible configurations are both solvable and achievable.

Comments

Post a Comment

Popular posts from this blog

Notes on Setting up a Titan V under Ubuntu 17.04

I recently purchased a Titan V GPU to use for machine and deep learning, and in the process of installing the latest Nvidia driver's hosed my Ubuntu 16.04 install. I was overdue for a fresh install of Linux, anyway, so I decided to upgrade some of my drives at the same time. Here are some of my notes for the process I went through to get the Titan V working perfectly with TensorFlow 1.5 under Ubuntu 17.04. Old install: Ubuntu 16.04 EVGA GeForce GTX Titan SuperClocked 6GB 2TB Seagate NAS HDD + additional drives New install: Ubuntu 17.04 Titan V 12GB / partition on a 250GB Samsung 840 Pro SSD (had an extra around) /home partition on a new 1TB Crucial MX500 SSD New WD Blue 4TB HDD + additional drives You'll need to install Linux in legacy mode, not UEFI, in order to use Nvidia's proprietary drivers for the Titan V. Note that Linux will cheerfully boot in UEFI mode, but will not load any proprietary drivers (including Nvidia's). You'll need proprietary d

Mixed Models in R - Bigger, Faster, Stronger

When you start doing more advanced sports analytics you'll eventually starting working with what are known as hierarchical, nested or mixed effects models . These are models that contain both fixed and random effects . There are multiple ways of defining fixed vs random random effects , but one way I find particularly useful is that random effects are being "predicted" rather than "estimated", and this in turn involves some "shrinkage" towards the mean. Here's some R code for NCAA ice hockey power rankings using a nested Poisson model (which can be found in my hockey GitHub repository ): model <- gs ~ year+field+d_div+o_div+game_length+(1|offense)+(1|defense)+(1|game_id) fit <- glmer(model, data=g, verbose=TRUE, family=poisson(link=log) ) The fixed effects are year , field (home/away/neutral), d_div (NCAA division of the defense), o_div (NCAA division of the offense) and game_length (number of overtime

A Bayes' Solution to Monty Hall

For any problem involving conditional probabilities one of your greatest allies is Bayes' Theorem . Bayes' Theorem says that for two events A and B, the probability of A given B is related to the probability of B given A in a specific way. Standard notation: probability of A given B is written \( \Pr(A \mid B) \) probability of B is written \( \Pr(B) \) Bayes' Theorem: Using the notation above, Bayes' Theorem can be written:  \[ \Pr(A \mid B) = \frac{\Pr(B \mid A)\times \Pr(A)}{\Pr(B)} \] Let's apply Bayes' Theorem to the Monty Hall problem . If you recall, we're told that behind three doors there are two goats and one car, all randomly placed. We initially choose a door, and then Monty, who knows what's behind the doors, always shows us a goat behind one of the remaining doors. He can always do this as there are two goats; if we chose the car initially, Monty picks one of the two doors with a goat behind it at random. Assume we pick Door 1 an