\[ e = mc^2 \]

\[ \frac{r^2}{r^2+s^2} \]

\[ \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{{\pi}^2}{6} \]

\[ \int_{0}^{\infty} e^{-x}\, dx = 1 \]

\[ \int_{x^2 + y^2 \leq R^2} f(x,y)\,dx\,dy \]

\[ P(E) = {n \choose k} p^k (1-p)^{n-k} \]

\[ J_\alpha(x) = \sum\limits_{m=0}^\infty \frac{(-1)^m}{m! \, \Gamma(m + \alpha + 1)}{\left({\frac{x}{2}}\right)}^{2 m + \alpha} \]

\[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 \end{vmatrix} \]

## No comments:

## Post a Comment