### Who Controls the Pace in Basketball, Offense or Defense?

During a recent chat with basketball analyst Seth Partnow, he mentioned a topic that came up during a discussion at the recent MIT Sloan Sports Analytics Conference. Who  controls the pace of a game more, the offense or defense? And what is the percentage of pace responsibility for each side? The analysts came up with a rough consensus opinion, but is there a way to answer this question analytically? I came up with one approach that examines the variations in possession times, but it suddenly occurred to me that this question could also be answered immediately by looking at the offense-defense asymmetry of the home court advantage.

As you can see in the R output of my NCAA team model code in one of my public basketball repositories, the offense at home scores points at a rate about $$e^{0.0302} = 1.031$$ times the rate on a neutral court, everything else the same. Likewise, the defense at home allows points at a rate about $$e^{-0.0165} = 0.984$$ times the rate on a neutral court; in both cases the neutral court rate is the reference level. Notice the geometric asymmetry; $$1.031\cdot 0.984 = 1.015 > 1$$. The implication is that the offense is responsible for about the fraction $\frac{(1.031-1)}{(1.031-1)+(1-0.984)} = 0.66$ of the scoring pace. That is, offensive controls 2/3 of the pace, defense 1/3 of the pace. The consensus opinion the analysts came up with at Sloan? It was 2/3 offense, 1/3 defense! It's nice when things work out, isn't it?

I've used NCAA basketball because there are plenty of neutral court games; to examine the NBA directly we'll have to use a more sophisticated (but perhaps less beautiful) approach involving the variation in possession times. I'll do that next, and I'll also show you how to apply this new information to make better game predictions. Finally, there's a nice connection to some recent work on inferring causality that I'll outline.

### A Bayes' Solution to Monty Hall

For any problem involving conditional probabilities one of your greatest allies is Bayes' Theorem. Bayes' Theorem says that for two events A and B, the probability of A given B is related to the probability of B given A in a specific way.

Standard notation:

probability of A given B is written $$\Pr(A \mid B)$$
probability of B is written $$\Pr(B)$$

Bayes' Theorem:

Using the notation above, Bayes' Theorem can be written: $\Pr(A \mid B) = \frac{\Pr(B \mid A)\times \Pr(A)}{\Pr(B)}$Let's apply Bayes' Theorem to the Monty Hall problem. If you recall, we're told that behind three doors there are two goats and one car, all randomly placed. We initially choose a door, and then Monty, who knows what's behind the doors, always shows us a goat behind one of the remaining doors. He can always do this as there are two goats; if we chose the car initially, Monty picks one of the two doors with a goat behind it at random.

Assume we pick Door 1 and then Monty sho…

### Mixed Models in R - Bigger, Faster, Stronger

When you start doing more advanced sports analytics you'll eventually starting working with what are known as hierarchical, nested or mixed effects models. These are models that contain both fixed and random effects. There are multiple ways of defining fixed vs random random effects, but one way I find particularly useful is that random effects are being "predicted" rather than "estimated", and this in turn involves some "shrinkage" towards the mean.

Here's some R code for NCAA ice hockey power rankings using a nested Poisson model (which can be found in my hockey GitHub repository):
model <- gs ~ year+field+d_div+o_div+game_length+(1|offense)+(1|defense)+(1|game_id) fit <- glmer(model, data=g, verbose=TRUE, family=poisson(link=log) ) The fixed effects are year, field (home/away/neutral), d_div (NCAA division of the defense), o_div (NCAA division of the offense) and game_length (number of overtime periods); off…

### Gambling to Optimize Expected Median Bankroll

Gambling to optimize your expected bankroll mean is extremely risky, as you wager your entire bankroll for any favorable gamble, making ruin almost inevitable. But what if, instead, we gambled not to maximize the expected bankroll mean, but the expected bankroll median?

Let the probability of winning a favorable bet be $$p$$, and the net odds be $$b$$. That is, if we wager $$1$$ unit and win, we get back $$b$$ units (in addition to our wager). Assume our betting strategy is to wager some fraction $$f$$ of our bankroll, hence $$0 \leq f \leq 1$$. By our assumption, our betting strategy is invariant with respect to the actual size of our bankroll, and so if we were to repeat this gamble $$n$$ times with the same $$p$$ and $$b$$, the strategy wouldn't change. It follows we may assume an initial bankroll of size $$1$$.

Let $$q = 1-p$$. Now, after $$n$$  such gambles our bankroll would have a binomial distribution with probability mass function \[ \Pr(k,n,p) = \binom{n}{k} p^k q^{n-k…