- Get link
- X
- Other Apps
Right click on any equation for additional options.
e=mc2
r2r2+s2
∞∑n=11n2=π26
∫∞0e−xdx=1
∫x2+y2≤R2f(x,y)dxdy
P(E) = {n \choose k} p^k (1-p)^{n-k}
J_\alpha(x) = \sum\limits_{m=0}^\infty \frac{(-1)^m}{m! \, \Gamma(m + \alpha + 1)}{\left({\frac{x}{2}}\right)}^{2 m + \alpha}
\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 \end{vmatrix}
e=mc2
r2r2+s2
∞∑n=11n2=π26
∫∞0e−xdx=1
∫x2+y2≤R2f(x,y)dxdy
P(E) = {n \choose k} p^k (1-p)^{n-k}
J_\alpha(x) = \sum\limits_{m=0}^\infty \frac{(-1)^m}{m! \, \Gamma(m + \alpha + 1)}{\left({\frac{x}{2}}\right)}^{2 m + \alpha}
\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 \end{vmatrix}
Comments
Post a Comment