Skip to main content

Gambling to Optimize Expected Median Bankroll

Solving a Math Puzzle using Physics

The following math problem, which appeared on a Scottish maths paper, has been making the internet rounds.


The first two parts require students to interpret the meaning of the components of the formula \(T(x) = 5 \sqrt{36+x^2} + 4(20-x) \), and the final "challenge" component involves finding the minimum of \( T(x) \) over \( 0 \leq x \leq 20 \). Usually this would require a differentiation, but if you know Snell's law you can write down the solution almost immediately. People normally think of Snell's law in the context of light and optics, but it's really a statement about least time across media permitting different velocities.


One way to phrase Snell's law is that least travel time is achieved when \[ \frac{\sin{\theta_1}}{\sin{\theta_2}} = \frac{v_1}{v_2},\] where \( \theta_1, \theta_2\) are the angles to the normal and \(v_1, v_2\) are the travel velocities in the two media.

In our puzzle the crocodile has an implied travel velocity of 1/5 in the water and 1/4 on land. Furthermore, the crocodile travels along the riverbank once it hits land, so \( \theta_2 = 90^{\circ}\) and \(\sin{\theta_2} = 1\). Snell's law now says that the path of least time satisfies \[ \sin{\theta_1} = \frac{x}{\sqrt{36+x^2}} = \frac{4}{5},\] giving us \( 25x^2 = 16x^2 + 24^2\). Solving, \( 3^2 x^2 = 24^2, x^2 = 8^2\) and the solution is \(x = 8\).

Comments

Popular posts from this blog

A Bayes' Solution to Monty Hall

For any problem involving conditional probabilities one of your greatest allies is Bayes' Theorem . Bayes' Theorem says that for two events A and B, the probability of A given B is related to the probability of B given A in a specific way. Standard notation: probability of A given B is written \( \Pr(A \mid B) \) probability of B is written \( \Pr(B) \) Bayes' Theorem: Using the notation above, Bayes' Theorem can be written:  \[ \Pr(A \mid B) = \frac{\Pr(B \mid A)\times \Pr(A)}{\Pr(B)} \] Let's apply Bayes' Theorem to the Monty Hall problem . If you recall, we're told that behind three doors there are two goats and one car, all randomly placed. We initially choose a door, and then Monty, who knows what's behind the doors, always shows us a goat behind one of the remaining doors. He can always do this as there are two goats; if we chose the car initially, Monty picks one of the two doors with a goat behind it at random. Assume we pick Door 1 an

Mixed Models in R - Bigger, Faster, Stronger

When you start doing more advanced sports analytics you'll eventually starting working with what are known as hierarchical, nested or mixed effects models . These are models that contain both fixed and random effects . There are multiple ways of defining fixed vs random random effects , but one way I find particularly useful is that random effects are being "predicted" rather than "estimated", and this in turn involves some "shrinkage" towards the mean. Here's some R code for NCAA ice hockey power rankings using a nested Poisson model (which can be found in my hockey GitHub repository ): model <- gs ~ year+field+d_div+o_div+game_length+(1|offense)+(1|defense)+(1|game_id) fit <- glmer(model, data=g, verbose=TRUE, family=poisson(link=log) ) The fixed effects are year , field (home/away/neutral), d_div (NCAA division of the defense), o_div (NCAA division of the offense) and game_length (number of overtime

Sergey Brin, Please Pick up your Paychecks

The state of California is currently holding over $6 billion  in unclaimed property belonging to millions of people. What type of property and who are the rightful owners? According to California's official unclaimed property website, these assets fall into the following categories: Bank accounts and safe deposit box contents Stocks, mutual funds, bonds, and dividends Uncashed cashier's checks or money orders Certificates of deposit Matured or terminated insurance policies Estates Mineral interests and royalty payments, trust funds, and escrow accounts People forget, people die, people move around. But $6 billion is a staggering amount of money; some of these amounts have to be really large. Let's try to find some interesting examples. This is official California UCP search form . Programmer and database types will notice one problem immediately - no fuzzy string matching . If your name or address was misspelled on the assets, or munged in the recording proce