Quantum Mechanics and Quantum Computation

##

##
About the Course

Quantum computation is a remarkable subject, and is based on one of the great computational discoveries that computers based on quantum mechanics are exponentially powerful. This course aims to make this cutting-edge material broadly accessible to undergraduate students, including computer science majors who do not have any prior exposure to quantum mechanics. The course will introduce qubits (or quantum bits) and quantum gates, the basic building blocks of quantum computers. It will cover the fundamentals of quantum algorithms, including the quantum fourier transform, period finding, and Shor's iconic quantum algorithm for factoring integers efficiently. The course will also explore the prospects for quantum algorithms for NP-complete problems and basic quantum cryptography.

The course will not assume any prior background in quantum mechanics. Instead, it will use the language of qubits and quantum gates to introduce the basic axioms of quantum mechanics. This treatment of quantum mechanics has the advantage of both being conceptually simple and of highlighting the paradoxes at the heart of quantum mechanics. The most important pre-requisite for the course is a good understanding of basic linear algebra, including vectors, matrices, inner products, eigenvectors and eigenvalues, etc.

##
About the Instructor(s)

Umesh Vazirani is the Strauch Distinguished Professor of Electrical Engineering and Computer Science at University of California, Berkeley, and is the director of the Berkeley Quantum Information and Computation Center. Prof. Vazirani has done foundational work on the computational foundations of randomness, algorithms and novel models of computation. His 1993 paper with Ethan Bernstein helped launch the field of quantum complexity theory. He is the author of two books "An introduction to computational learning theory" with Michael Kearns and "Algorithms" with Sanjoy Dasgupta and Christos Papadimitriou.