- Get link
- X
- Other Apps
Hofstadter mentions the following recursive relation in his great book "Gödel, Escher, Bach": \[ \begin{align} g(0) &= 0;\\ g(n) &= n-g(g(n-1)). \end{align} \] I claim that \( g(n) = \left\lfloor \phi\cdot (n+1) \right\rfloor \), where \( \phi = \frac{-1+\sqrt{5}}{2}\), and I'll show this using a technique that makes proving many identities of this type nearly automatic. Let \( \phi\cdot n = \left\lfloor \phi\cdot n \right\rfloor + e\), where \( 0 < e < 1\) as \( \phi \) is irrational, nor can \(e = 1-\phi\), and note that \(\phi\) satisfies \( {\phi}^2 + \phi - 1 = 0\). Some algebra gives \[ \begin{align} n-\left\lfloor \left( \left\lfloor \phi\cdot n \right\rfloor + 1 \right) \cdot \phi \right\rfloor &= n-\left\lfloor \left( n\cdot \phi - e + 1 \right) \cdot \phi \right\rfloor \\ &= n-\left\lfloor n\cdot {\phi}^2 - e\cdot \phi + \phi \right\rfloor \\ &= n-\left\lfloor n\cdot \left(1-\phi\right) - e\cdot \phi + \phi \right\rfloor \\ ...