Processing math: 100%
Skip to main content

Posts

Showing posts from March, 2013

Solving Recurrences with Difference Equations

Here's an example from Robert Sedgewick's course on analytic combinatorics . Solve the recurrence an=3an13an2+an3 for n>2 with a0=a1=0 and a2=1. Let f(n)=an; in the language of difference equations the above becomes simply Δ3fΔn3=0. Immediately, f(n)=c2n2+c1n+c0. Applying the initial conditions we get c0=0,c2+c1=0,4c2+2c1=1, and so the solution is an=12n212n. Now what if the initial conditions are changed so a1=1?

Baseball, Chess, Psychology and Pychometrics: Everyone Uses the Same Damn Rating System

Here's a short summary of the relationship between common models used in baseball, chess, psychology and education. The starting point for examining the connections between various extended models in these areas. The next steps include multiple attempts, guessing, ordinal and multinomial outcomes, uncertainty and volatility, multiple categories and interactions. There are also connections to standard optimization algorithms (neural  nets, simulated annealing). Baseball Common in baseball and other sports, the log5 method provides an estimate for the probability p of participant 1 beating participant 2 given respective success probabilities p1,p2. Also let q=1p in the following. The log5 estimate of the outcome is then: p=p1q2p1q2+q1p2=p1/q1p1/q1+p2/q2pq=p1q1q2p2 The final form uses the odds ratio , \( \frac{p}{q}...